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Abstract

Autonomous landing is a challenging problem for aerial robots. An autonomous

landing manoeuver depends largely on two capabilities: the decision of where to

land and the generation of control signals to guide the vehicle to a safe landing. We

focus on the �rst capability here by presenting a strategy and an underlying fast

algorithm as the computer vision basis to make a safe landing decision. The exper-

imental results obtained from real test 
ights on a helicopter testbed demonstrate

the robustness of the approach under widely di�erent light, altitude and background

texture conditions, as well as its feasibility for limited-performance embedded com-

puters.
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1 Introduction

Autonomous aerial vehicles bring together a large set of requirements that
introduce many new research challenges to mobile robotics. In this paper, we
focus on a key capability for aerial robots - the ability to land autonomously.

Helicopters are interesting aerial vehicles for research purposes. Due to their
nonlinear dynamics they make an excellent testbed for control algorithms.
Their vertical take-o� and landing capability makes them attractive for several
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applications, especially in urban areas. With recent advances in camera tech-
nology and image processing hardware, it is natural to consider a vision-based
solution to the problem safe landing. To do this, a nadir-pointing camera and
an image processing machine are needed. Traditional vision-based approaches
to the problem of autonomous landing often rely on a high-contrast landmark,
that can be easily identi�ed by standard image processing algorithms [9]. Nev-
ertheless, for a landing strategy to be feasible in real-environment applications,
the dependence on a �xed landing mark is limiting and therefore a 
exible
means of �nding safe places to land is required. A challenging algorithmic
problem arises though: the need to deal with all kinds of visual terrain fea-
tures and natural or arti�cial obstacles that the vehicle may 
y over in a real
mission. In addition, real time performance, that must be within reach of a
small embedded computer, is needed to track the chosen place and steer the
helicopter towards it.

This paper presents an algorithm for the visual detection of safe-landing loca-
tions. The algorithm is not constrained to any particular outdoor conditions.
Therefore assumptions and theoretical considerations are made from a general
view point, while mostly real experiments concentrating on a particular set
of scenes are used to validate them. As a result, a strategy and an algorithm
relying on image processing techniques to search the ground for a safe place
to land is presented.

The key contributions of this paper are:

(1) A computer vision-based approach for autonomous landing in an un-
known environment.

(2) An experimental evaluation of the approach under di�erent 
ight condi-
tions.

(3) Four di�erent strategies for safe-landing site detection.

The rest of the paper is organized as follows. The next section discusses some
of the most closely related previous work. Then the general description of
the approach and the underlying assumptions are presented, followed by the
details of the image processing algorithm. We focus on the image description,
since such a description is used to look for the landing area. The �nal sections
address the experimental results and the conclusions, along with the intended
future work.

2 Related Work

There are several remarkable achievements within the �eld of autonomous he-
licopters, where a wide range of research purposes and applications is found.
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Three representative samples are found in [6],[13] and [8]. In the �rst two cases
the prototypes are able to 
y autonomously in hover and along elementary
trajectories, whereas the latter, in addition to autonomous 
ight, has demon-
strated recognition and localization of ground-based targets. In the �eld of
application-oriented prototypes, an unmanned helicopter for monitoring road
and tra�c networks [3] is also under development, and elsewhere the proto-
type is intended to perform autonomous inspections of overhead high-voltage
power lines [2].

Concentrating on the problem addressed in this research, we are unaware of
a vision-based safe-landing system for an autonomous aerial robot. However
there are several related achievements that are relevant, since they have certain
common aspects with this work. In these approaches the ground is searched
from the air and certain features are analyzed for mostly localization purposes.

The visual odometer [1], supported by inexpensive angular sensors to dis-
ambiguate rotation from translation, provides a relatively accurate position
measure. The customized image processing hardware tracks pairs of target
templates in each of the images provided by two ground-pointing cameras and
matches them. The system strongly relies on two assumptions: the ground is

at and rich in features. With 
at ground, the system must match just one
of the targets, and by having certain features, matching and tracking both
become more accurate.

Other work in the area of autonomous robotic helicopters was done by the
team to which the authors of this paper belong, using the same platform
as the one used in the experiments reported here. The experiment described
in [12] shows a simplemethod for estimating the position, heading and altitude
of an aerial robot by tracking the image of a communicating GPS-localized
ground robot.

In related research dense 3-D surfaces are generated and salient features are
extracted and matched to a coarse model of the terrain [5]. This approach
is intended to provide autonomous vehicles with a robust absolute position
estimation in natural environments, and the prospective applications include
self-localization of autonomous aerial vehicles and precision landing on comets
and asteroids.
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3 General Description of the Approach

3.1 Vision-based landing in the AVATAR project

The USC AVATAR [7] (Autonomous Vehicle Aerial Tracking And Reconnais-
sance) helicopter (Fig. 1) is a gas-powered model helicopter �tted with PC104
computers and custom control electronics. It has been developed through three
generations over the last ten years in our lab. It carries a high-quality Inertial
Measurement Unit (IMU), a Novatel RT20 GPS receiver/decoder, an engine
RPM sensor and a color video camera. Communication with ground work-
stations is via 2.4 GHz wireless Ethernet and 1.8 GHz wireless video. The
AVATAR control system is implemented using a hierarchical behavior-based
control system architecture, which splits the control problem into a set of
loosely coupled computing moduled called \behaviors". Up-to-date achieve-
ments include autonomous servoing to GPS locations, vision-based tracking
and following of moving ground objects, and interaction with ground robots
forming a heterogeneous robot group capable of cooperatively performing com-
plex missions [10].

Fig. 1. The USC AVATAR (Autonomous Vehicle Aerial Tracking And Reconnais-

sance)

We are parallely addressing autonomous landing by using a high-contrast land-
mark. Preliminary experiments showing how such a landmark can be found,
and its location in the image used, to dynamically guide the helicopter to the
landmark are in progress . These will be described in a forthcoming paper.

The research described in this paper is similar to the previous one with respect
to the means and the model-free approach but addresses a quite di�erent
problem: the safe landing place is no longer provided but has to be found.
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3.2 What is a safe area?

As a basic starting point we need to de�ne what is considered as a safe place
lo land. In our approach a safe place is any area on the ground ful�lling the
following two conditions:

(1) The area is big enough for the helicopter to land within.
(2) The area is essentially clear, i.e., free or either natural or arti�cial obsta-

cles.

The �rst condition is a natural one, the robot can not land on a space which is
not large enough to accommodate its main rotor and tail boom. Without loss
of generality, we look for a circular area of a certain minimum size on which
to land.

The second condition needs some explanation. It is necessary but not su�-
cient for the most general case of autonomous landing. Clearly landing in an
area near (or on) obstacles is undesirable. However in the general case, the
algorithm should also guide the robot to a safe landing area where the local
curvature of the ground is zero and where the local ground plane is horizon-
tal. In this paper we assume that the underlying terrain is 
at and horizontal
but strewn with obstacles (such as cars, boxes, people, rocks, etc. ). Thus we
explore the case where the algorithm needs to look for an essentially clear
area.

3.3 Assumptions

We make the following assumptions:

(1) The camera is mounted perpendicular to the plane of the ground, pointing
straight down.

(2) The vertical axis of the camera image plane is aligned with the principal
axis of the helicopter.

(3) The image shows a higher contrast at obstacle boundaries compared to
the boundaries of visual features due to the terrain texture.

(4) As already stated above, the underlying terrain is 
at.

The �rst two assumptions a�ect the performance of the motion-based search
strategies that are presented below. Both of these are violated to a small extent
by our AVATAR testbed, but our algorithm is robust to such small violations.
The third one is a fundamental assumption, as it provides the basis for the
algorithm to decide if a visual feature is an obstacle or not. This issue is
discussed further in the following sections.
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3.4 General strategy

Under the assumption that contrast is higher at the boundaries of the obstacles
than elsewhere, the image processing strategy to apply is obvious: a contrast

threshold must be worked out to provide a criterion of what must be considered
an obstacle and what must not. The algorithm must then search the image
for a circular area in which all the pixels have a level of contrast below the
threshold.

Where and how to look for such an area in the image is an important issue,
which we tested using the following four strategies:

(1) Single-frame analysis. The image sequence is analyzed on a single-frame
basis, i.e., without taking any advantage of motion and the expected
continuity between consecutive frames. The algorithm attempts to �nd a
safe-landing location as close to the center of the image frame as possible.

(2) Multi-frame tracking analysis. Once the search, led by the previous (single-
frame) strategy, provides an initial estimate of a safe landing area, such
an area is tracked over the rest of the sequence.

(3) Multi-frame velocity-vector-based analysis. Despite the chosen name, the
sequence is actually analyzed on a single-frame basis but the search con-
centrates on the area from which the optical 
ow enters the image, i.e.,
on the area right in front of the helicopter. This is done by calculating
the relative direction between the helicopter velocity vector (provided
by the IMU) and the main axes of the camera image plane (taking into
consideration assumption 2 from the previous section).

(4) Whole multi-frame analysis. This approach brings together the previous
two multi-frame strategies. The latter provides the �rst safe area and the
other tracks it over the next images.

The results shown in Section 5 show how each succeeding strategy improves
upon the performance of the previous one.

4 Image Processing Algorithm

To work out the suitable contrast threshold referred above, two sets of strate-
gies are conceivable:

(1) An adaptive threshold based on local analysis. The image is split into
small blocks and a di�erent contrast threshold is worked out for each one
according to its local properties. The main advantage of this approach
is obvious: the thresholds are expected to provide a good �t to the local

6



properties of the ground. However, di�culty dealing with di�erent scales
of texture (due to the di�erent altitudes at which the helicopter 
ies
during landing) and computing the proper size of the blocks, along with
relatively heavy processing, are the discouraging aspects of this approach.

(2) A uniform threshold based on global analysis. A unique and uniform
threshold is worked out for the whole image. Such a threshold is obvi-
ously expected to �t the local properties more roughly than the adaptive
threshold does but, robustness under changing light conditions and di�er-
ent scales of texture and lighter processing make this strategy attractive.

According to these constraints the latter strategy was adopted. The results
shown in Section 5 demonstrate why this choice is appropriate.

Two issues have yet to be addressed. First, to choose a proper global contrast
descriptor. Such a descriptor must be correlated with the \optimum" contrast
threshold, i.e., the one which retains just the actual boundaries of the obsta-
cles in the image to deal with and removes spurious boundaries and ground
texture features. Second, the correlation function between the descriptor and
the threshold must be found.

4.1 Contrast descriptor and correlation function

Contrast is generally de�ned as a measure of the change in the intensity level
that pixels display throughout the image. A numeric expression for contrast
is given below:

C =

vuuut 1

NM

N;MX
i;j

(fij �B)2

where fij stands for the value of the pixel located at coordinates (i; j) in an
NxM image having an average brightness level B.

This is a very low-level way of expressing contrast and lacks invariant behav-
ior under changing scale or light conditions. Therefore other higher-level and
more meaningful contrast descriptors are needed for our purpose. After trying
di�erent options and assessing their correlation with the optimum threshold,
we chose as the suitable contrast descriptor the normalized average of the nor-

malized edge-image histogram. This dimensionless descriptor, �

�
, is derived by

normalizing the edge image and calculating the average (�) and the standard
deviation (�) of its histogram.

This descriptor can be demonstrated to ful�ll the following properties [4]:
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(1) It is theoretically invariant under proportional light changes: f 0

ij = kfij
(2) It is theoretically invariant under uniform light changes: f 0

ij = fij + k

(3) It is theoretically scale-invariant under any periodic texture patterns,
which encourages one to believe that it may also be insensitive under
other more realistic textures to a great extent.

To assess how such a descriptor correlates with the optimumcontrast threshold
the following experiment was performed: among the images collected over a
few test 
ights, a number of them (34), as di�erent as possible, were chosen
to make up a meaningful experimental set. All those images have a common
pattern: the scene is made up of a grassy background with arti�cial obstacles
(basically boxes) on it. Then a subjective 1 optimum threshold was worked
out for each one, along with the contrast descriptor �

�
. Such an optimum

threshold was expressed in terms of the percentile of pixels having a higher
level of contrast 2 . The pairs of values obtained are shown in Fig. 2.
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Fig. 2. Pairs of values �
�
{Best threshold/percentile obtained from the experimental

set. The least squares linear �t is also shown.

The graph demonstrates that a correlation exists between the descriptor and
the optimum threshold. After several �tting trials, a linear �t proved to be
the best according to the least squares criterion. Fig. 2 also shows such a �t,
whose numeric expression is given below:

p = 94:4333 + 3:7724
�

�
(1)

1 The criterion is actually objective to a certain extent: the optimum threshold is

the one which removes spurious features from the image but leaves the boundaries

of the obstacles in it. However that occurs in a progressive way along a range (more

or less narrow) of threshold values, so there is some room for subjectivity within

that range.
2 The pixel value in the edge image was taken as the contrast measure.
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where p stands for the percentile referred to above.

It may be noted that the �t explains the main cause of variation of the opti-
mum threshold but there are other sources of in
uence that it does not explain.
As a matter of fact, no descriptor based on one-dimensional image representa-
tions, like histograms, can determine the optimum threshold. We could expect
to do so by using descriptors that pay attention to the two-dimensional spa-
tial relations among the outstanding features, like entropy or moment-based
descriptors [11], but such parameters all demand more computation than our
application can presently a�ord.

4.2 Changing scenery: robustness

In order to evaluate to what extent our approach works when the background
scenery (the ground texture) changes, the same experiment was performed on
a set of collected textures, shown in Fig. 3. Fig. 4 displays the obtained values
of the descriptor �

�
along with those already shown in Fig. 2.

Fig. 3. Set of collected natural textures

Two major facts emerge from this �gure: on the one hand, the �

�
values ob-

tained from the natural textures are relatively close to each other, especially
when one takes into account how di�erent those textures are from the point
of view of human perception; on the other hand, the range of values they
are spread over is narrower than that of the images of the �rst experimen-
tal set (images gathered from the helicopter), all of which share a common
background texture (grass) 3 . In other words, when something di�erent (an
obstacle) breaks into a plain and mostly regular texture, the descriptor �

�
re-

duces and, in addition, such a reduction is steeper than that we �nd when the

3 The standard deviation of the descriptor values for the set of textures was 11.53%

of their mean, while that of the descriptor values for the aerial image data was

20.63% of their mean.
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Fig. 4. Values of the texture descriptor �
�
obtained from the set of natural textures.

Just these values matter because the corresponding percentiles are all 100, since

they are pure textures without any obstacles within them

background texture is turned into a quite di�erent one. Therefore we are not
concerned about what kind of scenery the helicopter is 
ying over, because
the sensitivity of the �

�
descriptor is negligible compared to when an obstacle

intrudes into the �eld of view. This is the key fact that allows us to assert
that this approach is valid, robust and, as shown in Section 5, works well for
the intended purpose.

As already mentioned, scale sensitivity is also a major concern in our approach.
To evaluate to what extent the �

�
descriptor is scale-invariant a massive ex-

periment was done: several thousand randomly-generated arti�cial textures at
�ve di�erent scales made up the experimental set. The contrast descriptor was
calculated for every one and its scaled versions. Fig. 5 (where only the values
obtained for 200 textures are displayed for clarity) shows the results.

The deviation in �

�
due to scale changes turned out to be 8.26% of its average

value, whereas the mean deviation over the textures themselves was 5.30%.
These �gures point out two important and encouraging facts:

(1) Texture is again demonstrated to cause only slight changes in the de-
scriptor �

�
, since the mean deviation due to texture itself (5.30%) is even

lower than that obtained on the small set of natural textures.
(2) The descriptor �

�
is also highly insensitive to scale. Consider that arti�cially-

generated textures di�er from natural ones and their discrete and highly
changing features make them theoretically 4 poor candidates for scale
invariance. We are thus further encouraged in concluding that �

�
is scale-

4 The basic condition is that the pattern must be continuous, then discretization

has some disturbing e�ects.
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invariant.

5 Results and Discussion

We performed a total of ten real test 
ights to evaluate the four strategies
presented in Section 3.4. We measured how they are a�ected by di�erent 
ight
conditions. Two conditions were tested: 
ight mode (hovering or motion) and
altitude mode (a relatively low altitude (�10 m) and a higher one (�18 m)).
A total of 385 images were collected during 2 hours of experiments. Fig. 6
displays two samples of the images gathered during those experiments.

5.1 O�ine experiment

The four strategies were tested on the sequences gathered and the following
performance indicators were worked out for each one:

(1) A change histogram, showing how much the suggested safe-landing area
moves in the image (in pixels) between every frame and the next one
and, therefore, the extent to which the same safe area is chosen over the
sequence.

(2) The image processing rate (in frames per second) 5 .
(3) The failure rate, i.e., the percentage of images for which the algorithm

fails to �nd a safe landing area. It may be noted that this rate includes

5 On a Pentium II@233MHz-CPU machine
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(a) Helicopter 
ying at low alti-

tude (�10 m)

(b) Helicopter 
ying at high al-

titude (�18 m)

Fig. 6. Two samples of experimental aerial images. The circles stand for the landing

area determined by the algorithm and the white rectangles are obstacles (boxes)

both kinds of failure causes: either there is no safe landing place in the
�eld of view or there is actually one but the algorithm did not succeed in
�nding it.

Another meaningful indicator might be the false positive rate, i.e., the per-
centage of images for which the algorithm makes a mistake and suggests a
landing area that is not actually safe (because there are obstacles within it).
This will not be discussed further because a quick count revealed it to be
negligible (<2%) in all the strategies. In addition the false positives were only
temporary: one or two images later the algorithm no longer considered such
an area as safe.

The results are shown in Fig. 7, from which the following inferences may be
drawn:

(1) The higher the altitude, the higher the processing rate and the lower
the failure rate. As an example compare the whole multi-frame analysis
case shown in Fig. 7a and Fig. 7b. The failure rate in the former is
38% compared to 11.6% in the latter. The processing rate in the former
is 30.32 frames per second compared to 31.94 in the latter. This was
an expected result taking into consideration that at low altitudes the
obstacles occupy relatively larger areas of the image, whereas the required
size of the landing circle (in pixels) becomes larger, so the algorithm has
much more di�culty �nding a large enough area.

(2) The tracking analysis dramatically improves the continuity, as expected.
Even more remarkable is the fact that this is done at a very moderate
computational cost. This is apparent when the � values are compared
between the single frame and multi-frame analysis for any of the altitude
or motion conditions. As an example consider Fig. 7d. For the single
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(a) Helicopter in hover at low altitude

(�10 m)
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(b) Helicopter in hover at high altitude

(�18 m)
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(c) Helicopter in motion at low altitude

(�10 m)
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(d) Helicopter in motion at high altitude

(�18 m)

Fig. 7. Performance of the di�erent search strategies under di�erent 
ight modes

and altitude conditions. Each �gure is a four-histogram set showing the change in

suggested safe-landing area (in pixels) from frame to frame for each search strategy.

frame analysis � = 28:44, while for the multi-frame analysis � = 8:14.
This improvement is achieved at the cost of less than 4 frames per second
in processing speed.

(3) Letting the velocity vector lead the search is obviously e�ective. This
can be seen by comparing the results of the pure tracking and the whole
multi-frame strategies. In spite of the rise in failure rate (a expected
result taking into consideration that the velocity-vector-strategy forces
the algorithm to �nd the landing area in a restricted part of the image),
the rest of the �gures improve. On the one hand, continuity becomes
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higher because of the fact that the �rst detected safe area has just entered
the image, so it is expected to take longer until leaving it and, therefore,
forcing the algorithm to look for a new one; as a consequence, processing
rate also rises slightly because the algorithm has to look for a new landing
place fewer times.

(4) The whole multi-frame strategy is de�nitely the best. There is evidence
for this from the indicators shown in Fig. 7 and also from observing the
separate in
uence of the two strategies fused in it: tracking and search
led by the velocity vector.

In short, the �gures suggest that when the search is performed at relatively
high altitudes (as it seems reasonable to do) the tracking strategy provides
the expected continuity between consecutive frames at an a�ordable compu-
tational cost, while the velocity-vector-based approach speeds up processing,
along with making the landing manoeuvre easier for the helicopter since the
landing area is in front of it. Finally, the whole multi-frame strategy, by fusing
both approaches, takes advantage of both and stands out as the best approach.

6 Conclusions and Future Work

We have experimentally demonstrated a straightforward and inexpensive de-
scription of aerial imagery that can be used to �nd a safe landing area. Such a
capability is essential for an autonomous aerial robot. Our strategy is robust
and lightweight. The results show how a set of non-coupled strategies can be
combined to assist a robot helicopter to perform an autonomous landing. In
addition, the high processing rates suggest that the approach is feasible and
the algorithm is implementable in limited-performance embedded computers.

Future work includes tests over terrain with rougher and irregular texture
patterns and features, as well as a further development of the link between the
vision and the control systems. The latter is expected to be accomplished with
a straightforward strategy: once the landing site has been found, the vision
system will take over the guiding responsibility by sending two-component
velocity commands to the control, in order to reduce the o�set between the
center of the landing area and that of the image.

Moreover, we forsee a further challenge: a whole autonomous landing exper-
iment, in which the manoeuvres, from the moment at which the helicopter
begins to look for the landing area until touch down, will all be autonomous.
This prospective achievement will require new vision-control collaboration fea-
tures to be implemented, including a landing abort mechanism.This capability
will prevent the helicopter from landing when the image processing system de-
tects obstacles within the landing area that had not been detected at larger

14



scales (higher altitudes).
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